Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(18): 27403-27415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512568

RESUMEN

The critical impact of sodium-doped molybdenum (MoNa) in shaping the MoSe2 interfacial layer, influencing the electrical properties of CIGSe/Mo heterostructures, and achieving optimal MoSe2 formation conditions, leading to improved hetero-contact quality. Notably, samples with a 600-nm-thick MoNa layer demonstrate the highest resistivity (73 µΩcm) and sheet resistance (0.45 Ω/square), highlighting the substantial impact of MoNa layer thickness on electrical conductivity. Controlled sodium diffusion through MoNa layers is essential for achieving desirable electrical characteristics, influencing Na diffusion rates, grain sizes, and overall morphology, as elucidated by EDX and FESEM analyses. Additionally, XRD results provide insights into the spontaneous peeling-off phenomenon, with the sample featuring a ~ 600-nm MoNa layer displaying the strongest diffraction peak and the largest crystal size, indicative of enhanced Mo to MoSe2 conversion facilitated by sodium presence. Raman spectra further confirm the presence of MoSe2, with its thickness correlating with MoNa layer thickness. The observed increase in resistance and decrease in conductivity with rising MoSe2 layer thickness underscore the critical importance of optimal MoSe2 formation for transitioning from Schottky to ohmic contact in CIGSe/Mo heterostructures. Ultimately, significant factors to the advancement of CIGSe thin-film solar cell production are discussed, providing nuanced insights into the interplay of MoNa and MoSe2, elucidating their collective impact on the electrical characteristics of CIGSe/Mo heterostructures.


Asunto(s)
Molibdeno , Sodio , Molibdeno/química , Sodio/química , Conductividad Eléctrica
2.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985752

RESUMEN

Zinc sulfide (ZnS) thin films prepared using the chemical bath deposition (CBD) method have demonstrated great viability in various uses, encompassing photonics, field emission devices, field emitters, sensors, electroluminescence devices, optoelectronic devices, and are crucial as buffer layers of solar cells. These semiconducting thin films for industrial and research applications are popular among researchers. CBD appears attractive due to its simplicity, cost-effectiveness, low energy consumption, low-temperature compatibility, and superior uniformity for large-area deposition. However, numerous parameters influence the CBD mechanism and the quality of the thin films. This study offers a comprehensive review of the impact of various parameters that can affect different properties of ZnS films grown on CBD. This paper provides an extensive review of the film growth and structural and optical properties of ZnS thin films influenced by various parameters, which include complexing agents, the concentration ratio of the reactants, stirring speed, humidity, deposition temperature, deposition time, pH value, precursor types, and annealing temperature environments. Various studies screened the key influences on the CBD parameters concerning the quality of the resulting films. This work will motivate researchers to provide additional insight into the preparation of ZnS thin films using CBD to optimize this deposition method to its fullest potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...